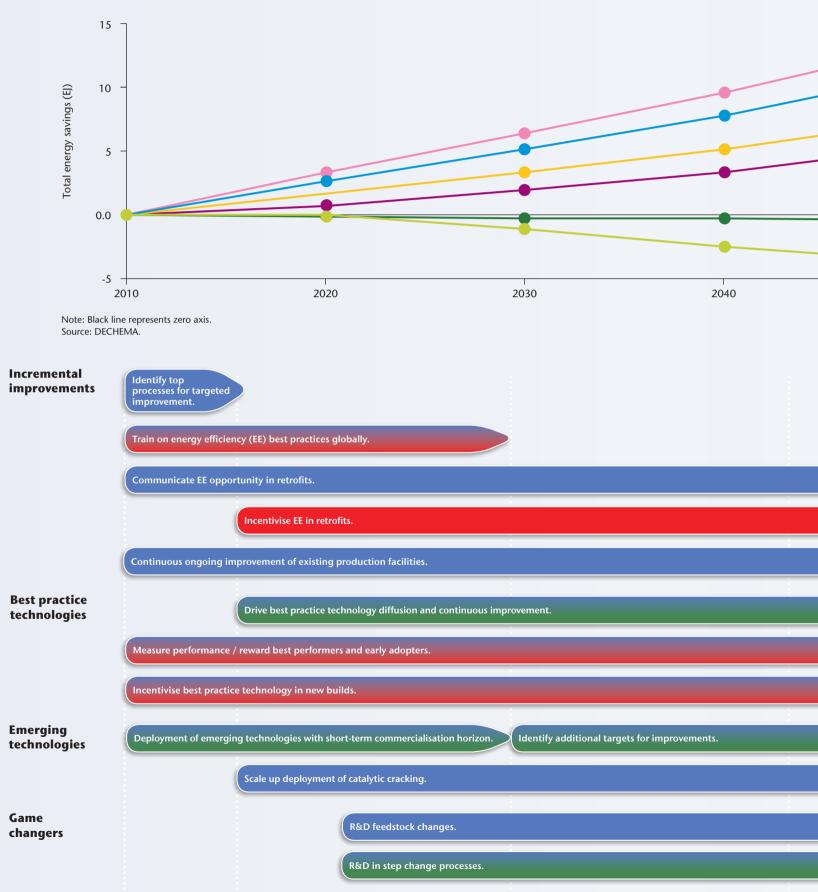
IEA/ICCA/DECHEMA **Roadmap targets**


Energy savings potential in the chemical industry

2020

2013 2015

Key findings

- 18 products (among thousands) account for 80% of energy demand in the chemical industry and 75% of GHG emissions.
- Catalyst and related process improvements could reduce energy intensity for these products by 20% to 40% by 2050 combining all improvement scenarios. This represents savings of 13 EJ/yr, equivalent to 1 GtCO $_{2}$ /yr by 2050. These savings should not be "left behind", yet a revival/rebalancing of R&D, development efforts, and capital will be required for breakthroughs.
- To 2025, steady progress in implementing incremental improvements and deploying best practice technologies (BPT) could provide substantial energy savings and emissions reduction.
- Achieving deeper energy and emissions cuts will require development and deployment of emerging technologies that exceed the capacity of current BPT.
- A step change in the sector's energy consumption and GHG emissions would require the development of "game changer" technologies.
- Sustainable biomass feedstocks and hydrogen from renewable energy sources are examples of potential game changers, although currently they are not viable for broad application as they increase energy use. Long-term investment in R&D is warranted to continue advances.

2045 2025 2030 2035 2040 GHG reductions potential in the chemical industry 2.00 Emerging technologies BPT optimistic 1.50 BPT conservative Incremental improvement 1.00 0.50 Biomas — Hydroger 0.00 2050 2010 2020 2030 2040 2050 Source: DECHEMA. Stakeholders: Academia and research organisations Industry Government

onstrate game changing technology

Scale up and deploy game changers.

2050

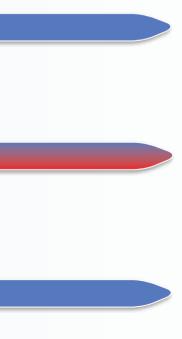
Key actions over the next ten years

Policymakers

- Develop and implement policies that more highly reward energy efficiency investments and remove barriers for new investments.
- Create a long-term policy framework that encourages investments to reinvigorate catalyst/ process improvement and R&D for high energyconsuming processes.
- Introduce enabling policies for best practices in regions where new facilities are built.
- Eliminate energy subsidies which are barriers to use of more energy efficient technology.

Chemical industry

- Identify top catalyst/process-related opportunities; accelerate R&D and capital investments that improve energy efficiency.
- Facilitate R&D on game changers with partners to lower barriers and operating costs.
- Promote global and regional co-operation on reducing energy and/or emissions via industry associations.


Academia and research organisations

- Stimulate academic and national laboratory research on large-volume/high energy use processes.
- Take action with industry leaders to identify top prospects for reducing technical barriers.

Financial institutions

• Work together with the chemical industry to better understand changes in funding needs of a low-carbon chemical sector and funding opportunities of such a transition.

- Hydrogen
- Biomass
- Emerging technologies
- **BPT** optimistic
- BPT conservative
- Incremental improvement

Regional indicators

North America		Low-Demand Case			Hig	High-Demand Case		
	2010	2020	2030	2050	2020	2030	2050	
Total energy consumption in the 2DS (PJ)	8 043	7 542	7 068	6 128	7 525	6 785	5 266	
of which feedstock is	3 507	3 735	3 654	3 492	3 743	3 499	2 987	
Energy savings (2DS vs. 6DS) (PJ)	0	1 064	1 697	3 247	891	1 765	3 860	
Total CO_2 emissions in the 2DS (MtCO ₂)	268	213	177	120	207	170	95	
CO ₂ emissions reduction (2DS vs. 6DS) (MtCO ₂)	0	69	104	175	66	101	184	

Latin America		Low-Demand Case			Hig	h-Demand Case		
	2010	2020	2030	2050	2020	2030	2050	
Total energy consumption in the 2DS (PJ)	1 539	2 262	2 587	2 944	2 275	2 649	3 134	
of which feedstock is	813	1 350	1 613	1 943	1 375	1 688	2 153	
Energy savings (2DS vs. 6DS) (PJ)	0	120	235	621	142	351	1 024	
Total CO_2 emissions in the 2DS (MtCO ₂)	53	61	60	53	60	59	52	
CO ₂ emissions reduction (2DS vs. 6DS) (MtCO ₂)	0	15	27	53	17	32	67	

OECD Europe		Low-Demand Case			Hig	High-Demand Case		
	2010	2020	2030	2050	2020	2030	2050	
Total energy consumption in the 2DS (PJ)	5 938	5 312	4 929	4 257	5 288	4 733	3 676	
of which feedstock is	2 925	2 803	2 670	2 435	2 795	2 554	2 074	
Energy savings (2DS vs. 6DS) (PJ)	0	649	1 023	1 939	546	1 092	2 386	
Total CO_2 emissions in the 2DS (MtCO ₂)	177	135	113	74	132	105	56	
CO_2 emissions reduction (2DS vs. 6DS) (MtCO ₂)	0	39	57	96	39	60	106	

OECD Asia Oceania		Low-Demand Case			Hig	High-Demand Case		
	2010	2020	2030	2050	2020	2030	2050	
Total energy consumption in the 2DS (PJ)	4 392	4 326	4 134	3 327	4 227	3 888	2 641	
of which feedstock is	2 747	2 851	2 796	2 367	2 787	2 639	1 928	
Energy savings (2DS vs. 6DS) (PJ)	0	354	614	1 217	366	840	1 935	
Total CO_2 emissions in the 2DS (MtCO ₂)	134	108	90	54	103	85	40	
CO ₂ emissions reduction (2DS vs. 6DS) (MtCO ₂)	0	29	45	74	30	47	84	

Source: International Energy Agency.

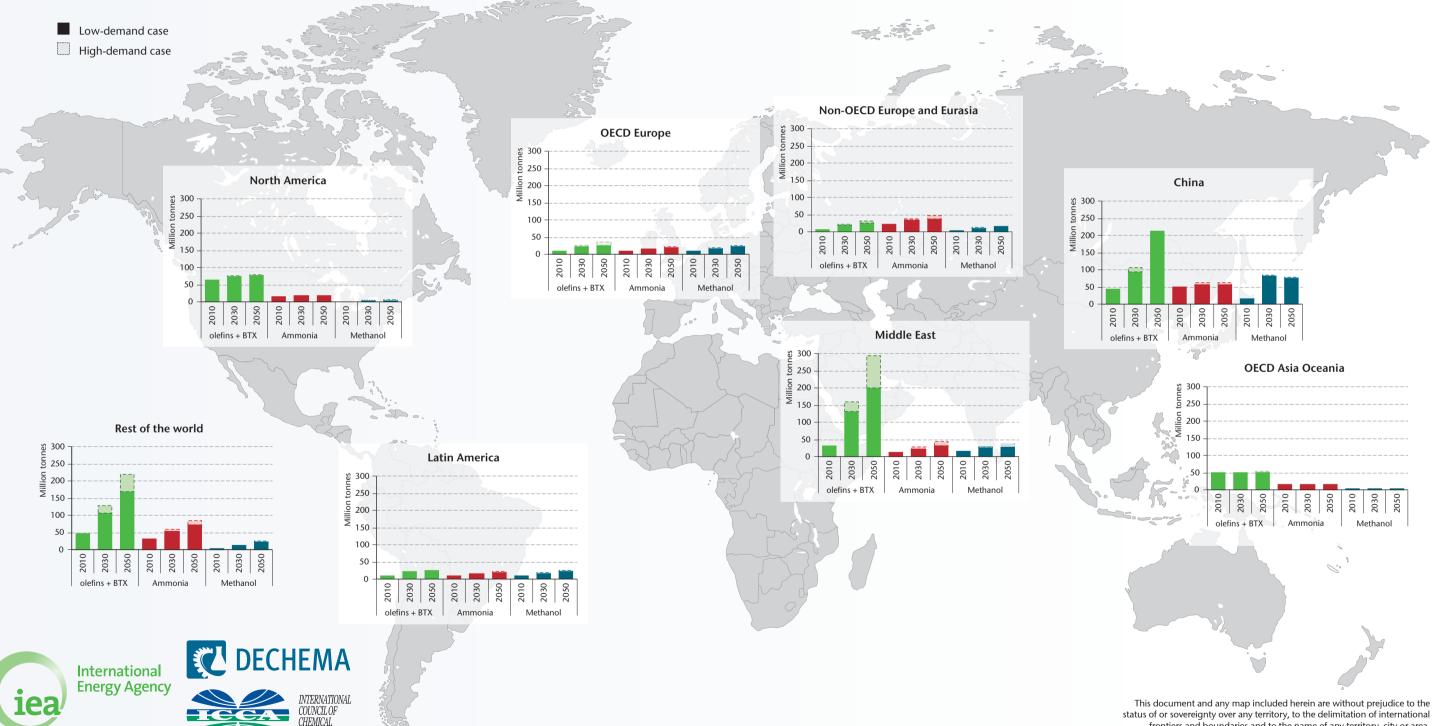
Global HVC production in 2050 low demand case (%)

Non-OECD Europe and Eurasia		Low-Demand Case			High-Demand Case			
	2010	2020	2030	2050	2020	2030	2050	
Total energy consumption in the 2DS (PJ)	3 878	3 929	4 121	4 314	4 099	4 359	4 580	
of which feedstock is	2 227	2 421	2 602	2 895	2 547	2 782	3 123	
Energy savings (2DS vs. 6DS) (PJ)	0	548	1 010	1 840	403	879	1 896	
Total CO_2 emissions in the 2DS (MtCO ₂)	172	149	144	126	149	145	126	
CO ₂ emissions reduction (2DS vs. 6DS) (MtCO ₂)	0	41	71	120	40	71	127	

Middle East		Lov	v-Demand O	Case	Hig	High-Demand Cas		
	2010	2020	2030	2050	2020	2030	2050	
Total energy consumption in the 2DS (PJ)	4 973	7 383	9 856	12 503	8 077	10 851	14 781	
of which feedstock is	2 611	4 797	7 019	9 605	5 425	8 002	11 956	
Energy savings (2DS vs. 6DS) (PJ)	0	1 114	2 086	4 656	1 140	2 714	7 519	
Total CO_2 emissions in the 2DS (MtCO ₂)	201	204	204	184	206	201	174	
CO_2 emissions reduction (2DS vs. 6DS) (MtCO ₂)	0	88	171	327	96	201	420	

China		Low-Demand Case			High-Demand Case		
	2010	2020	2030	2050	2020	2030	2050
Total energy consumption in the 2DS (PJ)	8 760	12 523	14 641	20 054	12 769	15 061	17 297
of which feedstock is	3 523	5 854	7 339	12 165	6 053	7 658	9 876
Energy savings (2DS vs. 6DS) (PJ)	0	1 382	2 696	8 419	1 096	2 660	8 949
Total CO_2 emissions in the 2DS (MtCO ₂)	402	495	523	495	498	548	502
CO ₂ emissions reduction (2DS vs. 6DS) (MtCO ₂)	0	112	210	477	118	213	443

Rest of the world		Low-Demand Case			Hig	High-Demand Case			
	2010	2020	2030	2050	2020	2030	2050		
Total energy consumption in the 2DS (PJ)	4 861	7 210	8 671	11 726	7 361	9 454	12 530		
of which feedstock is	2 910	4 764	5 962	8 711	4 911	6 686	9 671		
Energy savings (2DS vs. 6DS) (PJ)	0	359	813	2 325	495	1 489	4 947		
Total CO_2 emissions in the 2DS (MtCO ₂)	186	219	223	213	222	234	219		
CO ₂ emissions reduction (2DS vs. 6DS) (MtCO ₂)	0	47	99	222	58	128	295		


Source: International Energy Agency.

China 30%

Energy and GHG Reductions in the Chemical Industry via Catalytic Processes

Regional Chemicals production in 2010, 2030 and 2050 (Million tonnes)

frontiers and boundaries and to the name of any territory, city or area.

Source: International Energy Agency.