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This article investigates monitoring technologies, which provide systematic solutions for nucleation
detection based on external bulk video imaging (BVI). The methods under investigation rely on
multivariate image analysis, image feature descriptors and statistical control charts (SPCs). For the
design of SPCs the video information is transformed into time series. The application of SPCs may be
hindered by autocorrelated time series, which show oscillatory patterns due to light reflections from
the stirrer blades; however, the autocorrelation can be reduced by performing operations with the first
principal component (PC1) of the captured color image or by stacking the frames based on the
dominating frequency. Another option is to design digital signal filters in the frequency domain to
decrease the autocorrelation of the time series.

It was found that the fastest methods for nucleation onset detection were the monitoring in the
principal score space and control chart based monitoring of the mean gray intensity of the PC1 images
sampled at 25 Hz. Furthermore, it was observed that performing principal component analysis (PCA)
calculations on multidimensional or multispectral information not only provides the combination of
variables that explain most of the variance at a certain time instance but also decreases the

autocorrelation of the resulting time series.

For acoustic signal based monitoring the gray scale images were converted into a 2 channel stereo
sound. It was found that this method has less performant nucleation onset detection capabilities
compared to the methods which rely directly on the images.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Crystallization is one of the most important unit operations in
the pharmaceutical industry since it has the role of separation and
purification, and it strongly influences the down-stream proces-
sing activities.

Metastable zone identification is the first step during the
design of crystallization systems and is required to ensure
reproducible crystal characteristics. Since the metastable zone
width (MSZW) is not a thermodynamic property, it changes in
function of several system characteristics such as: cooling rate,
degree of stirring, solution history and presence of impurities or
additives. The accurate determination of the metastable zone
allows improved supersaturation control policies, ensures maximal
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productivity and the desired particle size distribution (PSD) at the
end of the batch (Braatz, 2002; Nagy et al., 2008).

In order to determine the MSZW several sensors can be
considered: turbidity (De Anda et al, 2005; Parsons et al, 2003),
focused beam reflectance measurement (Fujiwara et al., 2002;
O'Grady et al., 2007), spectroscopy (Anderson et al., 2001; Fujiwara
et al, 2002; O’'Grady et al., 2007; Pollanen et al., 2006), ultrasonic
velocity measurements (Gurbuz and Ozdemir, 2003), density
(Marciniak, 2002) and electrical conductivity monitoring (Lyczko
et al,, 2002), hot stage microscopy (Kumar et al., 1996), quartz crystal
based monitoring (Joung et al., 2005; Loffelmann and Mersmann,
2002) and last but not least by visual inspection of the crystallizer
content (Sohnel and Mullin, 1988). Kawabata et al. (2006) investi-
gated imaging based nucleation onset and crystallization state
monitoring for protein crystallization. The need for robust nucleation
onset monitoring and prediction has been recognized by Pollanen
et al. (2006) who proposed multivariate statistical process monitoring
charts designed on the basis of IR spectra.

Recently, the proof of concept of bulk video imaging (BVI) was
introduced to automate the nucleation detection by visual
inspection. The particular feature of the noninvasive (Simon
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et al., 2009a) or in situ (Simon et al., 2009b) BVI method is that it
monitors the formation/dissolution of the solid phase using
information from the bulk suspension providing a low-cost and
automated method for MSZW determination, and making it a
well-suited process analytical technology (PAT) method for the
pharmaceutical and food industries. Moreover, the external BVI
method can be considered as an external and non-contact matrix
of turbidity probes. Previously, it was shown that BVI can be used
for nucleation onset monitoring and metastable zone identifica-
tion and has exhibited similar or better performance to the
existing focused beam reflectance measurement (FBRM), ultra
violet-visible (UV/Vis), infrared (IR) spectroscopy and calori-
metric signals. In the previous work, one of the suggested image
processing methods was to convert the colored images into gray
scale and to calculate a mean gray intensity value. The nucleation
onset was determined when the signal value rose above a
threshold value, which was arbitrarily chosen. It has been
recognized that the averaging operation filters the first particles,
which are small and their contribution to the overall gray
intensity is within the signal noise. The other proposed alter-
native, which is more complex from a design and an implementa-
tion point of view, suggests employing image processing
techniques to detect the first crystals as objects (Simon et al.,
2009b). Several other works related to image processing with
application in the field of particulate technology focus on image
segmentation for particle identification (Calderon De Anda et al.,
2005; Eggers et al., 2008; Larsen and Rawlings, 2009; Larsen et al.,
2006, 2007; Sarkar et al., 2009) while recent advances for the 3D
characterization are also reported (Darakis et al., 2010; Khanam
et al., 2008; Kempkes et al., 2009; Kempkes et al., 2010).

Turbidity based nucleation detection is a widespread approach
for nucleation detection; however, it is an in situ hence invasive
detection method. The external BVI provides good nucleation
detection while the probe is placed externally; hence, cleaning,
contamination and sensor fouling related problems are elimi-
nated. Since the BVI method relies on a video signal, the aim of
this work is to investigate monitoring technologies, which provide
systematic, sensitive and robust solutions for nucleation detec-
tion. To achieve these goals, video signal sampling alternatives
and image processing techniques such as multivariate image
analysis (MIA) and image feature descriptors are evaluated. The
multivariate image analysis method is selected because of the
multispectral nature of color pictures while feature descriptors
are considered due to their low level of computational complexity.
It is proposed that whenever feasible, the time series trends
generated using the methods mentioned above are monitored
using Shewhart and EWMA statistical control charts to provide
systematic nucleation onset detection. An alternative monitoring
method based on acoustic features is proposed by transforming
the video images into stereo sound signals. To the authors’
knowledge, it is for the first time that the problem of systematic
nucleation onset detection is tackled using multivariate image
analysis.

The article is structured as follows: after the description of the
motivation and experimental setup, the monitoring techniques
are introduced and discussed. The results and discussion section
presents the evaluation results and highlights the advantages of
each method. An overall comparison of the proposed methods and
final conclusions are presented in the last section.

2. Experimental

The external BVI method is based on recording the crystal-
lization process with a video camera, which captures 25 frames
per second. The video camera is placed externally and the

crystallizer vessel is covered with black folia in order to ensure
a dark background. The speed of the stirrer with four pitched
blades was fixed at 100 RPM. For large scale applications the
camera can be used through an observation window. The
illumination conditions are similar to those found in industrial
crystallizers where the illumination of the liquid bulk is low.
Anhydrous caffeine from Sigma-Aldrich with a minimum purity
of 98% in deionized water was used as the model. Details of
the experimental setup are found in previous work (Simon et al.,
2009a).

3. Bulk video imaging based nucleation monitoring

In this work several video data sampling and image processing
technologies are evaluated to provide a robust and sensitive
solution for systematic nucleation detection, as shown in Fig. 1.
The first class is the multivariate image analysis (MIA) framework
based on statistical concepts. Multivariate image analysis methods
decompose color red-green-blue (RGB) images into principal
components, which are also images. Within the class of MIA, the
monitoring in the score space of the original RGB image and the PCA
model prediction error monitoring techniques are implemented.
The second class relies on feature descriptors while the third
method converts the video information into a stereo sound.

3.1. Video data sampling and preprocessing

Previously it was observed that the time series trends of the
average of gray scale images show oscillatory patterns (Simon et al.,
20093, b) while detailed investigation has shown that these
oscillations of the image luminosity are due to the light reflected by
the stirrer blades. By performing an analysis of the time series data in
the frequency domain, several oscillation patterns are revealed as
shown by the power density plot in Fig. 2. These oscillating patterns
hinder the application of control charts; therefore, one has to design a
digital signal filter for the time series or has to perform the image
sampling in such a way that the pattern is removed. Such a filter is
the notch filter, which is a band-stop filter with a narrow stop band
that passes most frequencies unaltered, but attenuates those in a
specific range to very low levels.

The dominating frequencies found in the trends are due to the
stirrer rotation, which was fixed at 100 RPM and corresponds to
1.66 Hz. Although the blades of the stirrer are similar and one
could expect the dominating frequency at four times the stirrer
speed (6.6 Hz), it is believed that the peak at 1.66 Hz is due to the
oscillation of the entire stirrer along the horizontal position.

The video information sources are the RGB color images of
M x N x 3 dimensions, which are defined by the stacked R, G and B
color channels:

RGB = {R,G,B} (1

where M is the image width [pixels], N is the height [pixels], R, G,
and B are sets of pixels belonging to the red, green and blue color
components

_ [yR 4R R R _ [4G 4G G G
R= {xl,xz,. B AR ..XMN}, G= {x1 X3 o Xgse .,XMN}.

B= {x?,xg,. X .,xBMN} (2)

where xR x¢ xBare the intensity values of color pixels in the image.

The video signal sampling strategy can influence the nuclea-
tion onset monitoring performance; therefore, this work evalu-
ates several sampling strategies. The first sampling method
considers calculations on each frame (25Hz frequency).
According to the second method calculations are performed by
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Fig. 1. Schematic representation of the nucleation onset monitoring methods.
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Fig. 2. Power density plot of the mean gray trend using 25 Hz sampling for two
different experiments.

overlapping the images to increase the particle density. Stacked
information is also used within the framework of multiway
PCA/PLS methods to represent the process parameter values
during batch process monitoring (Nomikos and MacGregor, 1994,
1995a). Hereafter stacking, the overlapping operation is carried
out resulting in a single image. Information stacking is also
specific to the repetitive and run-to-run control strategies (Wang
et al., 2009). The overlapping method can also be applied to the
gray and first principal component images; the calculation of
these is discussed in the follow-up sections. To overlap 15 frames,
the R, G and B channels are extracted individually from each frame
then stacked to form an M x N x 15 matrix. The number of frames
to be overlapped should be determined according to the
dominating frequency, e.g. 1.66 Hz for this case. For the PC1
images a PCA calculation is required before stacking. The result of
stacking is an M x N matrix which is obtained by retaining the

maximum intensity value along the 3rd dimension
ﬁn,m =fm{a\>§5(Chn,m,f) n=1,.,N, m=1,.. ,M; Che{RG,B,GR,PC1}

3)

where Ch represents the R, G, B, gray (GR) or PC1 channel of 15
overlapped frames and it is a two dimensional matrix. The result
of the overlapping operation is an RGB image which contains all
particles encountered in one of the 15 frames. The overlapping
method is similar to the addition operation often used in image
processing. Unlike the addition operation along the pixels where
the intensities saturate above 255 and re-normalization is needed,
when the overlapping method is used, the pixel values are always
in the 0-255 range. It is expected that this method will decrease
the autocorrelation of the time series since it performs an
operation along the frames.

3.2. Multivariate image analysis

The multivariate image analysis based nucleation monitoring
strategy is justified by the fact that the captured frames consist of
three color channels; hence, these are multispectral. Low-cost
video cameras use a single light sensitive sensor and a color filter
array (CFA) with each pixel unit recording the intensity value of
each color channel typically red, green and blue. The most
widespread CFA is the Bayer filter (Bayer, 1976) shown in Fig. 3. In
this scheme the green filters are in a quincunx - interlaced - grid
with the red and blue completing the rest of the empty cells. Note
that the CFA captures only one-third of the needed color intensities
and it provides a 2D color matrix. Furthermore, the green color
filters make up half of the cells while the rest is shared by the blue
and red filters. This is due to the fact that the luminance response
curve of the eye peaks at around the frequency of green light. As a
next step, this 2D structure is converted into the well known 3D
or RGB color format by an interpolation method. This process is



4986 L.L. Simon et al. / Chemical Engineering Science 65 (2010) 4983-4995

Fig. 3. The Bayer filter (Bayer, 1976).

called debayering or demosacking. Some of the interpolation
methods are nearest neighborhood, bilinear interpolation, smooth
hue transition, adaptive color plane interpolation and gradient
based interpolation (Ramanath et al., 2002).

One source of correlation might be due to the fact that only
every third pixel value is a true measurement and the rest of the
pixel values are obtained by interpolation. Furthermore, image
compression algorithms may introduce additional correlation
among the color channels; therefore, multivariate image analysis
has been proposed to compress and extract uncorrelated
information using multiway principal component analysis (Geladi
et al., 1989). MPCA decomposes the unfolded multivariate image
array U into principal components made of score matrices tg,
loading vectors p, and into a residual matrix E:

A
U= Y tpg+E 4)
a=1

where A is the number of principal components. The multiway
PCA implementation proposed for the nucleation onset monitor-
ing follows the methodology described in previous works (Bharati
and MacGregor, 1998; Geladi et al., 1989) and the loading vectors
are computed using the efficient kernel algorithm proposed by
Geladi et al. (1989). The kernel matrix (UU) is first constructed
and a singular value decomposition (SVD) is performed on the
matrix to extract the loading vectors p, and the corresponding
score vectors t, are calculated according to Eq. (5):

ta =Upa (5)
The calculation results have been validated against the results
provided by the MACCMIA Matlab tool (Dunn, 2007) developed at
McMaster University, Canada. Several MIA based applications in
the context of process engineering have been reported: online
monitoring of snack food processes (Yu and MacGregor, 2003; Yu
et al., 2003), flames monitoring (Szatvanyi et al., 2006; Yu and
MacGregor, 2004), flotation froth monitoring (Liu et al., 2005),
anode cover alumina content (Tessier et al., 2008) and mineral
ore composition estimation (Tessier et al., 2007), counterfeit
drug detection (Rodionova et al.,, 2005), emulsion monitoring
(de Juan et al., 2005, 2008), quality control of polymer blends
(Gosselin et al., 2009), semiconductor characteristics monitoring
(Facco et al., 2009) and recently crystal (Sarkar et al., 2009) and
fiber size distribution determination (Tomba et al., 2010).

3.2.1. PCA model prediction error monitoring

Within the context of MIA, another alternative is to monitor
the PCA model prediction error. As the PCA model is built on
images containing crystal clear solution, upon nucleation, new
features appear in the images. These features, which were not
considered by the PCA model, will lead to the increase of the sum-
of-squares prediction error. In case the time series trend of the
PCA model prediction error is normally distributed and auto-
correlation is low, a SPC can be built. Alternatively, a threshold
value can be set to trigger the alarm for the nucleation onset.
Depending on the degree of explanation, the first or first two

principal components can be used for prediction. In this work
PCA is carried out simultaneously on 15 frames (corresponds
to the dominating frequency of 1.66 Hz) arranged in a single
(15N x M x 3) matrix. This way the autocorrelation of the time
series should be decreased.

3.2.2. PCA score space based monitoring for infrequent events

According to this method, a PCA model is built on images
which contain only common case variation as discussed by
Bharati and MacGregor (1998). For nucleation onset monitoring
purposes, the state of normal operation is represented by the clear
liquid without crystals while the crystals appearing in the liquid
are considered as infrequent special events.

According to Bharati and MacGregor (1998) a mask that
defines the pixels belonging to crystals is defined in the score
space of the first two principal components and the number of
pixels is counted off-line. It is expected that upon nucleation the
number of pixels falling within the mask boundaries matches
the number of pre-observed pixels within a certain tolerance;
otherwise, it is concluded that crystals are not present. A
threshold value on the number of pixels falling under the mask
can be set and used to detect nucleation. A score space based
monitoring application has been presented by Bharati et al. (2003)
for the monitoring of lumber defects.

3.3. Feature descriptors

Feature descriptors are used to represent information for a
certain group of pixels and in this work they are considered due to
their calculation simplicity. Global feature descriptors such as the
average color or the loading of the first principal component have
been used for the monitoring and prediction of coating content in
the snack industry (Yu and MacGregor, 2003). Furthermore,
uniformity of brightness and average brightness features of
different regions of the score space have been selected for the
monitoring of flames (Yu and MacGregor, 2004). Zhou et al.
(2009) proposed the intensity range to detect whether a particle is
present in the image acquired with a particle video microscope
(PVM) unit. The main characteristic of the previous descriptors is
that they do not retain spatial features and relationships among
the pixels. To overcome this drawback Sarkar et al. (2009) used
several spatial descriptors to identify crystals in a crystallization
process. More complex feature descriptors are used for image
texture analysis (Bharati et al., 2004).

In this work, for the purpose of nucleation onset detection the
average descriptor is used; furthermore, since the crystals which
are formed are brighter than the image background the maximum
intensity descriptor is additionally introduced. The conversion of
RGB images to gray scale (GR) is performed by the weighted
summation of the R, G and B components:

Grym = 0.2989R ;n +0.5870G, m +0.1140By, (6)

The obtained gray scale represents the luminance of the
original image and the weights in Eq. (6) are derived from the
NTSC-standard (National Television System Committee) used for
analog television signals. The mean intensity of each channel is
defined as follows:

Che Sqsa X"

MN
Ch represents the mean of red, green, blue, gray and PC1 images
and it is a scalar. The maximum intensity of the RGB image RGB y,ax
is defined as

RGBmax = max(max(R),max(G),max(B)) 8

Ch e {R.G,B,GR,PC1} )
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These descriptors can be calculated over an RGB image, separate R,
G, B channels, gray scale images or principal component scores
resulting from the multivariate image analysis. Since it is not the
purpose of this work to detect boundaries, spatial descriptors are
not considered. Furthermore, it is important to assess the time
series trends generated by the feature descriptors with respect to
normality and autocorrelation as these will be used to design
Shewhart and EWMA process monitoring charts.

3.4. Statistical process control using univariate Shewhart and EWMA
charts

Statistical process control charts are efficient and established
tools for process monitoring. Control chart assisted monitoring
has been applied to nucleation detection using IR spectroscopy
(Pollanen et al., 2006). Furthermore, a control chart and vision-
based process monitoring of metallic surfaces was presented by
Armingol et al. (2003). The authors proposed a multivariate
control chart for the monitoring of pixel values within an
observation window, and an out-of-control signal is generated if
any of the pixel values are outside of the control interval. An
EWMA based intensity value forecasting and residual monitoring
approach was presented by Nembhard et al. (2003) for the
transition monitoring of a plastic extrusion process.

The fundamental assumption behind the traditional control
charts is that the time series contains independent random
variables. Deviation from the assumption of low autocorrelation
yields the decrease of the in-control average run length leading to
higher false alarm rates. To investigate the autocorrelation
patterns in the frequency domain frequency plots or period-
ograms are used and the autocorrelation extent is evaluated by
using autocorrelation charts. More information on autocorrelation
is given in Appendix A.

The second requirement to build a control chart is that the
data should be normally distributed around the mean. In this
work, normality is assessed by using data histograms and is
quantified by the Lillefors test (Lilliefors, 1967). The Lilliefors test
is a two-sided goodness-of-fit test suitable when a fully-specified
null distribution is unknown and its parameters must be
estimated. The default null hypothesis is that the sample comes
from a distribution in the normal family, against the alternative
that it does not come from a normal distribution.

The monitoring robustness of Shewhart and EWMA charts
is increased by introducing the following rules: 5 or 10 chart
points should be consecutively out of control; this control rule
introduces at least 5ng/fs seconds delay, where ng is the sub-
group size and fs [Hz] is the sampling frequency. The nucleation
onset monitoring in a stirred vessel using image analysis is prone
to generate an autocorrelated signal with oscillating patterns due
to the light reflected from the blades of the stirrer. Attempts to
decrease the autocorrelation in the time series trends can be
made by using a digital filter designed based on frequency plots.
All the time series in this work are subject to autocorrelation and
normality tests with a 3¢ confidence interval.

3.5. Digital signal filtering

The aim of this section is to provide a short description to digital
filter design and for more details the reader is referred to the
literature (Oppenheim and Schafer, 2010). The filters designed in this
work are given by Eq. (9) and are based on the Blackman window:

sin(27ntf.(i—H/2)
i—H/2

for i = H/2, F(i) = 2nf; 9

Fi)=K [0.42—0.5 cos(2mi/H)+0.08 cos(4mi/H)]

where F is the filter value, K is a constant, f_ is the cutoff frequency
expressed as the fraction of the sampling rate and H is the size of the
filter kernel.

In order to obtain a band-reject or band-stop filter two low-
pass filters are designed using Eq. (9). A high-pass filter is
obtained by performing a spectral inversion of the low-pass filter
with highest cutoff frequency. The band-reject filter is obtained
by adding the low-pass and high-pass filters. Similar to the
procedure mentioned above 7 band-reject filters are designed to
remove the oscillations from the data, Fig. 4a. The filter kernel size
is 1000 points in order to obtain good roll-off properties (filter
behaves similarly to an ideal filter).

According to Fig. 2, it is observed that the dominating
frequencies occur at intervals of 1.66 Hz; therefore, a moving
average filter could also be considered since these have low-pass
filtering characteristics. The size of the window is set by the
highest dominating frequency, which is 1.66 Hz and corresponds
to 15 mean gray intensity values. The frequency response of a
moving average filter with 15 points is given by Eq. (10) and is
presented in Fig. 4b.

F(fr) = sin(wfrW)/W sin(nfr) (10)

where fr is the frequency value expressed as the fraction of the
sampling rate and W is the size of the moving window.

3.6. Image transformation into acoustic signal

The transformation of measurement data into acoustic signals
provides alternative monitoring solutions. The acoustic monitoring
performance for nucleation onset detection has been investigated
using the acquired video frames. According to this method the RGB
frames are first converted to gray scale images. Each gray image is
then divided to two equal 2D images along the width, and the
matrices were unfolded into vectors. As a result two MN/2 vectors
are obtained corresponding to a stereo sound signal. The playback
sampling frequency is 25MN/2 Hz. The signals are scaled between
—1 and 1 a priori to avoid clipping. The scaling was performed by
specifying a minimum and a maximum value to map all the data
points in the full sound range. The maximum value was set around a
value where nucleation onset has already occurred. Note that typical
computer soundcards support sampling frequencies between 5 and
44.1 kHz; therefore, some of the image pixel values might need to be
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Fig. 4. The band-stop (a) and a 15 point moving average (b) filter response in the
frequency domain.
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discarded. According to the maximum sampling frequency for
nucleation monitoring purposes an unfolded image with 2 x 44 100
pixels can be used to obtain a stereo sound.

The following Matlab (The Mathworks, 2009) toolboxes were
used within this project: Image Processing Toolbox, Signal
Processing Toolbox, Statistical Toolbox, Time Series Analysis Tool
and MACCMIA (Dunn, 2007) multivariate image analysis package.

4. Results and discussion

For plotting purposes the experimental data is presented about
10-15 min prior to nucleation. In order to provide an accurate
evaluation of the monitoring performance, a visual investigation of
the video data was performed and the frame-by-frame analysis has
shown that the first crystal appears after 784 s. Note that this crystal
was not visible when the video was played at 25 frames/s; therefore,
by observing the liquid phase early crystal detection by visual means
is not feasible. The result of the overlapping operation is presented
in Fig. 5, where it is observed that all particles which are present in
the individual frames are found in the overlapped frame and the
overall picture brightness has increased. This operation can also be
considered as a method to concentrate the information acquired in
several frames.

4.1. Multivariate image analysis

Upon the application of multiway PCA to an RGB image, three
principal components are obtained. Typical loading values of
images without crystals for the two monitoring methods are
presented in Table 1. The first score is a linear combination of the
three color channels, and it can be considered as a method to
convert a color image to a gray scale based on statistical
principles. Similar to the mean gray intensity, a mean value of
the first principal component can also be calculated.

The complements of the three principal components of an
image taken by the external camera are shown in Fig. 6. The first
principal component contains most of the information while the
second and the third components contain mostly noise. This
observation is confirmed by the sum of square explained values of
the principal components presented in Table 1.

4.1.1. PCA model based monitoring
The results of the PCA model prediction error trend using
Shewhart and EWMA charts are shown in Fig. 7a. Throughout this

Fig. 5. Result of the overlapping operation: 25 gray scale images overlapped (the
image is contrast enhanced by histogram equalization for visualization purposes).

Table 1
Principal components loadings and sum of squares explained for the BVI data.

Loading vectors Sum of squares explained (%)

Pl —0.605 —0.547 —-0.578 98.88
Py 0.374 0.445 —0.813 0.78
Pl 0.703 —0.708 —0.065 0.44

work, the gray line represents the Shewhart chart while the black
corresponds to the EWMA chart. The PC model was built using
clear liquid images and only the first principal component was
used for prediction.

The PCA modeling residual trend for the 25 Hz sampling has
shown the same correlation pattern as the mean gray trend with
the same dominating frequencies; therefore, a statistical process
control chart was not designed. Instead, the error trend obtained
by performing a PCA prediction on 15 stacked frames which
passed both the autocorrelation (Fig. 7b) and normality tests and
it was used for nucleation detection. The Shewhart-5 chart
detected the nucleation at 1045 s which is 261 s later than by
the frame-by-frame analysis. The EWMA-5 and EWMA-10 charts
detected the nucleation at 974 and 980 s. Throughout this work a
memory factor of 0.4 was used in the EWMA calculations. Note
that the EWMA chart, using the same detection rules as the
Shewhart chart, is faster at detecting the crystals due to its
memory effect.

4.1.2. PCA score space based monitoring for infrequent events

For this monitoring strategy the number of frames to be
stacked is arbitrary. A stacking of 25 frames was implemented
to increase the particle concentration in the overlapped image.
The score plots of PC1 versus PC2 of images with crystals,
using two different sampling methods at 25 Hz without and
with overlapping are shown in Fig. 8a and b, respectively. The
corresponding first principal component images are presented
in Fig. 9a and b, respectively. The pattern corresponding to
crystals is found at the highest intensity values. For single
images, it is observed that the pattern is less well defined than
for 25 frames overlapped. Also note that the contrast of PC1
images varies.

In order to determine the mask which contains the pixels
corresponding to crystals the MACCMIA Matlab tool (Dunn, 2007)
is used. Cropped snapshots of the tool and score mask for the
25 Hz overlapped sampling strategy are shown in Figs. 10 and 11.
It is observed that the crystals can be easily identified in the
score space. Furthermore, it is concluded that monitoring only
based on the PC1 score is enough. Therefore, PC1 score intervals
are identified within which the pixels correspond to crystals.
Note that the position of the score plot is different compared to
Fig. 8a and b, although the score pattern is the same. This is due to
the application of the image complement operator, which
converts dark pixels into bright ones and bright pixels are
converted to dark.

The score space of a single image sampled at 25 Hz is shown in
Fig. 11, and it is concluded that also single crystals can be
identified in the score space.

For a proper tuning of the score interval, a sensitivity analysis
is carried out. Note that the number of pixels falling under the
mask for the 25Hz overlapped strategy is higher since it
concentrates the information gathered during 1 s. The monitoring
results of the number of pixels contained in the score mask are
shown in Figs. 12 and 13 for the 25 Hz overlapped and 25 Hz
sampling with no overlapping, respectively. It is considered that
crystals are present when the number of pixels is below 1000 for
the 25 Hz overlapped sampling strategy and below 200 pixels
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Fig. 6. The complements of PCA scores of an overlapped image: (a) PC1, white traces show the moving crystal trajectory, (b) PC2 and (c) PC3.
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Fig. 7. PCA modeling error trend based on PC1 (a) and the autocorrelation chart (b).

for the 25 Hz sampling. It is observed that for the 25 Hz with
overlapping sampling there are few false alarms and the
nucleation detection is after 852s. The same conclusions are
drawn for the 25 Hz sampling with no overlapping case where
nucleation is detected slightly earlier, after 841 s; however, the
number of false alarms also increased. For all cases it is required
that at least 5 positive matches are within 1 s.

4.2. Feature descriptors

The comparison of mean gray and RGB,ax trends is shown in
Fig. 14.

Relying on visual analysis, it is concluded that the RGBy.x
index is the first to show the presence of crystals since no
averaging operation is performed. The large detection difference
between the mean gray and RGB.x trends is due to the large
monitoring window compared to the small particles. Note that
the mean of overlapped trends is about 5 intensity units larger
since the overlapping operation takes the maximum pixel value
along 25 frames. In this video data the size of a crystal is about
130 pixels, while the interrogation window contains 72 900
pixels corresponding to a size of 300 x 243. In Table 2 the results

200
100
0

200

Fig. 8. PC1 versus PC2 score space plots of BVI images containing crystals sampled
at 25 Hz no overlapping (a) and 25 Hz with overlapping (b).

of the autocorrelation, normality and detection results are
summarized.

The frame-by-frame sampling produced highly correlated
trends with partial fulfillment of the normality criterion. Only
the trends which passed both tests were considered for monitoring.
It is interesting to note that the PC1 trend successfully passed
both tests and the detection performance was good compared to
the visual crystal detection. The time series trend of PC1 is less
autocorrelated due to the RGB-to-gray conversion weights, which
change dynamically according to the input image and are the
result of the SVD calculation. The autocorrelation chart and the
frequency response of the signal used to build the SPC are shown
in Fig. 15, while the control chart is presented in Fig. 16.

For this video data, overlapping 15 frames followed by
calculating the mean of the image did not result in time series,
which could be used to build SPCs (Table 2b). A systematic feature
of the time series obtained by taking the maximum value in a
frame (including frames obtained by overlapping, Table 2¢) is that
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Fig. 9. The PC1 images containing crystals sampled at 25 Hz no overlapping (a), and 25 Hz with overlapping (b) corresponding to the score plots in Fig. 8a and b.

these are not autocorrelated and the normality requirement is
violated marginally for some cases. Although none of the time
series passed the normality test at 3g, they still show monitoring
potential.

By computing the mean of 25 frames (Table 2d), the
autocorrelation is not removed, the detection performance is
poor, and early false alarms are generated. The averaging over
25 frames for the PC1 signal yields a non-autocorrelated trend.
The mean R, G, B and GR trends of 25 overlapped frames are

autocorrelated and this operation introduces a detection delay of
about 80 s compared to the 25 Hz sampling.

The autocorrelation chart is presented in Fig. 17a where it is
observed that the autocorrelation coefficients are located within
the 30 confidence band and no particular patterns can be
identified. The Shewhart (gray) and EWMA (black) charts of the
same trends are shown in Fig. 17b.

The decreasing trend of the PC1 signal upon nucleation was
observed in all BVI trends, which relied on the averaging of the
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Fig. 10. Cropped snapshots of the MACCMIA tool used for mask position determination. Pixels under the mask in the score space (a) corresponding to crystals
(b); the sampling is at 25 Hz with overlapping; mask size is 128 x 128 pixels and the number of pixels under the mask is 3500.

Fig. 11. Cropped snapshot of the MACCMIA tool used for mask position determination. Pixels under the mask in the score space (a) corresponding to a single crystal
(b); 25 Hz sampling, no overlapping. The mask size is 100 x 128 pixels and the number of pixels under the mask is 200.
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Fig. 12. Number of pixels falling within the 144-255 (a) and 154-255 (b) interval
of the 1st PC score for the 25 Hz with overlapping sampling. Nucleation detection
at 852 and 854 s, respectively.

PC1 images. Note that the loading vector is negative and in order
to perform a gray scale conversion, the image complement
operator has to be applied according to which dark pixels become
bright and vice versa. In the resulting PC1 image the crystals are
white and the background is dark. Detailed inspection of the PC1
images shows that upon nucleation the background becomes
darker than the clear liquid PC1 background, which is why the
mean gray intensity trend decreases. Upon nucleation of a large
amount of crystals the mean intensity trend increases again.
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Fig. 13. Number of pixels falling within the 105-255 (a) and 115-255 (b) interval
of the 1st PC score for the 25 Hz without overlapping sampling. Nucleation
detection at 841 s in both cases.

The 1 Hz sampling (Table 2e) yields an autocorrelated signal and
it was found that also for this case working with the mean of PC1
yields a signal that can be used for SPC based monitoring.

Based on the results discussed above it is concluded that
performing PCA calculations on multidimensional or multispec-
tral information not only provides the combination of variables
that explain most of the variance at a certain time instance but
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also decreases possible autocorrelation features of the resulting
time series.

In order to decrease the autocorrelation of the time series, a
sampling time corresponding to 1.66 Hz or every 15 th frame was
also implemented. Although this strategy removed all the high
frequency correlations, oscillations at lower frequencies resulted
in autocorrelated trends and rendered the application of SPCs
unfeasible. The oscillations at low frequencies might be due
to the cooling agent, which is circulating in the jacket. This
sampling strategy might give good results when the images are
directly taken from the bulk using an endoscope or through an
observation window. Another sampling strategy that failed the
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Fig. 14. Feature descriptor trends: (a) mean gray intensity trends at 25 Hz

sampling (gray) and 25 Hz sampling with overlapping (black), (b) the RGBy,ax trend
at 25 Hz sampling.

Table 2

autocorrelation test was the averaging of gray intensity points by
blocks of 15 values. This operation resulted in a signal with
oscillations having frequencies lower than 1.66 Hz.

Another set of observations are related to the standard
deviations of the mean R, G and B trends calculated for 300 data
points for a clear liquid. The standard deviations are as follows:
red 0.456, green 0.145 and blue 0.534. It is concluded that the
green channel has the highest signal to noise ratio; note that
green makes up for the half of the Bayer matrix elements. Still,
explaining the low standard deviation value with the filter
structure might be difficult as the analyzed images have already
suffered a compression using an MPEG2 (Moving Pictures Expert
Group) encoding and the measured values have been changed.
Alternative methods for nucleation detection based on digital
images are the employment of artificial intelligence techniques
for pattern matching (Simon and Hungerbuhler, 2010).

4.3. Digital filtering results

In order to remove the autocorrelation the band-stop digital
filters (Fig. 4) based on the Blackman window were applied.
The resulting signal in the frequency domain is shown in Fig. 18a,
while the results for the moving average filter are shown
in Fig. 18b. As it is observed in both plots, the dominating
frequencies were successfully removed; however, other low
frequency oscillation patterns are still detected. These patterns
hinder the application of SPCs in both cases as the signal shows
non-normal distribution and high autocorrelation. The removal
of dominating frequencies due to the stirrer rotation is not
enough for control chart based monitoring since low-frequency
oscillations are still found in the data. As mentioned before, it is
thought that these oscillations are due to the circulating cooling
liquid in the jacket. It is concluded that the frequency response of

Summary of feature descriptor trends detection performance. First visually detected crystal is at 784 s.

Sampling method Feature descriptor

Autocorrelation test

Normality test Detection time (s)

Shewhart-5 EWMA-5 EWMA-10
(a) RGBnax (Fig. 14b) OK X = = =
25 Hz Mean gray (Fig. 14a) X X - - -
Mean red X X - - -
Mean green X X - - -
Mean blue X X - - -
Mean PC1 (Fig. 15a and b, Fig. 16) OK OK 897 842 842
(b) RGBmax OK X - - -
15 overlapped frames Mean gray X OK - - -
Mean red X OK - - -
Mean green X OK - - -
Mean blue X OK - - -
Mean PC1 X OK - - -
(c) Graymax OK X - - -
15 overlapped frames Red max OK X - - -
Greenax OK X - - =
Bluemax OK X - - -
(d) Mean gray (Fig. 14a) X OK - - -
25 overlapped frames Mean red X OK - - -
Mean green X OK - - -
Mean blue X OK - - -
Mean PC1 (Fig. 17a and b) OK OK 958 922 950
(e) Max RGB OK X - - -
1Hz Mean gray X OK - - -
Mean red X OK - - -
Mean green X OK - - -
Mean blue X OK - - -
Mean PC1 OK OK 1056 952 1010
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Fig. 15. Autocorrelation chart (a) and the frequency response plot (b) of the mean
PC1 signal sampled at 25 Hz.
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Fig. 16. Shewhart and EWMA control charts designed on the mean value of PC1
images sampled at 25 Hz.
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Fig. 17. Autocorrelation (a) and SPC chart (b) of the mean PC1 images sampled at
25 Hz with overlapping.

the mean gray intensity trends obtained using bulk video imaging
requires the design of custom filters based on the frequency
domain characteristics of the time series. In this case a filter is
designed in the frequency domain and inverted using a fast
Fourier transformation (FFT) to shift the filter in the time domain.
The design of such digital filters is not subject of further
investigation in this article.
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Fig. 18. Band-stop (a) and moving average (b) filtering result in the frequency
domain of the mean gray intensity signal sampled at 25 Hz.

4.4. Acoustic signal monitoring results

At the beginning of the crystallization process, the sounds
produced are monotone and upon nucleation onset a noticeable
change occurs characterized by high pitched sounds. Monitoring
the nucleation onset via acoustic inspection by human operators
introduces a high degree of subjectivity since it heavily relies
on the operators’ acoustic memory. The main drawback of this
approach is that it is difficult to have a comparison basis of the
sound produced during nucleation in relation to the sound
produced when the solution was clear. It is concluded that
nucleation is detected only after a significant change in the sound
pattern has occurred and it is less accurate than the other
methods presented in this paper; nevertheless, its application
could be evaluated for other process monitoring purposes.

5. Conclusions

In this work bulk video imaging data analysis and monitoring
strategies have been evaluated in the form of multivariate image
analysis, feature descriptors and statistical control charts. The
fastest methods for nucleation onset detection were the monitor-
ing in the principal score space and control chart based
monitoring of the mean gray intensity of PC1 images sampled at
25Hz. The application of SPCs may be hindered by the
autocorrelated time series, which show oscillatory patterns due
to light reflected from the stirrer; however, this can be
considerably reduced by performing operations with the first
principal component of a color image; alternative solutions are
stacking of frames by the dominating frequency or designing
custom digital filters to decrease the time series autocorrelation.

It was found that performing PCA calculations on multi-
dimensional or multispectral information not only provides the
combination of variables that explain most of the variance at a
certain time instance but also decreases possible autocorrelation
features of the resulting time series. Finally, it is concluded
that the statistical control chart assisted monitoring provides a
systematic and feasible framework for nucleation onset detection
which can be easily transferred into industrial environments.
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For acoustic signal based monitoring the gray scale images
were converted into a 2 channel stereo sound. It was found that
this method has less performant nucleation onset detection
capabilities compared to the methods which directly rely on the
images.

Nomenclature

A number of principal components

B blue component channel

Ch color, gray, or principal component channel
E residual matrix

F filter value

fe cutoff frequency

fs sampling frequency in [Hz]

fr frequency as a function of sampling rate
G green component channel

GR gray intensity of the RGB image

H size of the filter Kernel

M image width [pixels]

N image height [pixels]

sub-group size

p loading vector or histogram bin value
PC1, PC2 principal components

red component channel

score vector

lag

unfolded multivariate image array
weight

pixel intensity value along a color channel
time series

moving window size

sample mean

S
['S]

~<\g‘<><§c::p;u

Greek symbols

A EWMA memory factor [-]
Y autocovariance function
autocorrelation

Indices

f image

i pixel along image height
j pixel along image width
q pixels

Abbreviations

CFA color filter array

BVI bulk video imaging

EWMA exponentially weighted moving average
FBRM  focused beam reflectance measurement
MIA multivariate Image Analysis

MPCA  multiway principal component analysis

MSZW  metastable zone width

PSD particle size distribution

RGB color image defined by the red, green, and blue color
channels

SPC statistical process control

SVD singular value decomposition

UV/Vis ultra violet-visible

Var variance
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Appendix A

Univariate process control charts have been proposed in the
forms of Shewhart, cumulative sum (CUSUM) and EWMA charts.
These charts differ from each other by applying different weighting
to past data samples: e.g. the Shewhart chart weights only the last
observation, the CUSUM chart assigns equal weights to all observa-
tions in a moving window, and the EWMA applies an exponentially
decaying weighting (Hunter, 1986) according to Eq. (A.1):

t
Ves1= > Ws (A1)
s=0

where y; is the observation at time t, y;.; is the EWMA prediction
and wy are the weights

Ws = A(1—2) (A2)

where A is the memory factor [-] which usually takes values
between 0.15 and 0.4. To increase monitoring robustness, control
charts are used in conjunction with control rules when the process
presents occasional outliers, which should not trigger an out-of-
control signal. Multivariate extensions of univariate charts, e.g.
Hotelling chart and multivariate EWMA represent monitoring
solutions when several parameters are considered (Macgregor and
Kourti, 1995; Nomikos and MacGregor, 1995b). Whenever the
signals show a high degree of correlation, SPC charts are built on
the latent variables obtained after performing PCA.

The autocorrelation of a time series at lag k is unknown in
practice but it can be estimated for a stationary process according
to Eq. (A.3):

pe=1k k=012, (A3)
Yo

where ), is the autocovariance function defined as
1 N—k

=N 2 Ve NVer=P) k=01.2,... (A4)

t=1

where Y is the time series and Y is the sample mean. The 95%
confidence interval is defined by two standard deviation
limits + 2(Var(p?))!/*> where Var is the variance of py assuming
that the true autocorrelations beyond some lag u are zero
(Box et al., 2008):

1
Var(p ~ 5 (1+2(p1+ -+ +pp) u=k=1 (A5)

An alternative autocorrelation test is the Durbin-Watson test
(Durbin and Watson, 1950). There are two accepted approaches to
build control charts on significantly autocorrelated data as
summarized by Lu and Reynolds (1999): adjustment of the
control limits and the calculation of variance to account for
autocorrelation. The alternative approach is to fit a time series
model and then use the residuals for monitoring.
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