Extracellular Polymeric Substances secreted by *Geobacter sulfurreducens* under electroactive conditions.

Markus Stöckl, Natascha Teubner*, Dirk Holtmann, Wolfgang Sand*, Klaus-Michael Mangold | stoeckl@dechema.de | 2013/03/01 – 2018/02/28

<table>
<thead>
<tr>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bioelectrochemical Systems (BES) use bacteria as catalysts for the production of current and/or organic products</td>
</tr>
<tr>
<td>• Electroactive bacteria usually form Biofilms on electrodes of Microbial Fuel Cells (MFC)</td>
</tr>
<tr>
<td>• Biofilms consist of water, cells and Extracellular Polymeric Substances (EPS)</td>
</tr>
<tr>
<td>• EPS of electroactive bacteria have been rarely studied</td>
</tr>
</tbody>
</table>

Experimental

+ The electroactive bacterium *G. sulfurreducens* was grown in a H-cell MFC using anode respiration (conditions given in Fig. 2)
+ Biofilms were harvested for fractionation and analysis as presented in Fig. 3

Results

+ *G. sulfurreducens* gave a current density curve typical for MFCs with a maximum current density of 170 µA cm⁻² after 7 days.
+ Biochemical EPS analysis:
 - The highest amount of EPS were produced by *G. sulfurreducens* under MFC conditions compared to the control
 - The majority of EPS were detected in the soluble fraction of the EPS
 - Proteins dominate all analyzed EPS fractions
 - Electroactive cells secrete significantly more EPS than the controls

Conclusions

+ *G. sulfurreducens* was successfully cultivated in a MFC
+ Electroactive biofilms were harvested for biochemical analysis
+ Harvesting and fractionation allow biochemical analysis of the EPS:
 - *G. sulfurreducens* excretes more EPS under anode respiration compared to cells grown with fumarate respiration
 - Proteins dominate excreted extracellular polymeric substances