Detaillierte Informationen dazu, wie diese Webseite Cookies nutzt, finden Sie in unseren Datenschutzhinweisen. Legen Sie jetzt fest, ob diese Website Cookies, wie nachfolgend beschrieben, verwenden darf. Sie können Ihre Einstellungen jederzeit ändern.
Notwendige Cookies
sind für die grundlegenden Funktionen der Website erforderlich und können daher nicht deaktiviert werden.
On the basis of a microorganism widely used in industry, an innovative platform for the production of economically relevant chemicals will be created, which - compared to existing systems - allows significantly higher yields and conversion rates. The organism will be able to metabolize lignocellulosic sugars from agricultural waste and convert them into basic and fine chemicals via a novel synthetic metabolic pathway. To this end, the central metabolism is fundamentally altered, thereby enabling a direct coupling of growth and bioproduction. Furthermore, scale-up and product separation processes will be optimized, thus creating industry-relevant conditions. Accompanying analysis of markets, technologies and environmental impacts as well as the involvement of industry representatives guarantee a tailor-made development of processes and products.
Latest publications:
Schwardmann, L.S. et al. (2023) Formamide-based production of amines by metabolically engineering Corynebacterium glutamicum. Appl Microbiol Biotechnol doi: 10.1007/s00253-023-12592-3 (link)
Schwardmann, L.S. et al. (2023) Nitrogen-controlled Valorization of Xylose-derived Compounds by Metabolically Engineered Corynebacterium glutamicum. Synthetic Biology and Engineering 1, 1–14 (link)
Werner F, Schwardmann L, Siebert D, et al. (2023) Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate. Biotechnology for Biofuels and Bioproducts. (link)
K. Wowra, E. Hegel, A. Scharf, A. Grünberger, K. Rosenthal (2023) Estimating environmental impacts of early-stage bioprocesses. Trends in Biotechnology, 2332 (link)
S. Wenk, N. J. Claassens, S. N. Lindner, Synthetic metabolism approaches: A valuable resource for systems biology. Current Opinion in Systems Biology, 100417 (2022). (link)
E. Orsi, N. J. Claassens, P. I. Nikel, S. N. Lindner, Growth-coupled selection of synthetic modules to accelerate cell factory development. Nature communications 12, 5295 (2021). (link)